
SEP1 - 1

Introduction to Software
Engineering Processes

SWENET SEP1 Module

Developed with support from the National Science Foundation

SWENET SEP1 - 2

Overview

• Software Development Models
• Software Processes
• CMM-type Processes
• Agile Processes
• Process Exercise
• References

SWENET SEP1 - 3

Software Development Models

• Over the years, various models have emerged
to support the development of software
products.

• The models address the following life-cycle
activities:
– requirements analysis and specification
– design
– construction
– testing
– operation and maintenance

SWENET SEP1 - 4

Waterfall Development Model - 1

• The Waterfall life cycle model emphasizes that software
is developed in sequential phases (e.g., analysis, design,
code, etc.) with established milestones, documents, and
reviews at the end of each phase.

• In the pure waterfall there is no overlap of phases;
however, in refinement of the model, “feedback loops”
are introduced to allow return to previous phases (e.g.,
design analysis leads back to modification of the
requirements)

SWENET SEP1 - 5

Waterfall Development Model - 2

requirements
analysis &

design

construction

testing

operation &
maintenance

specification

SWENET SEP1 - 6

Spiral Development Model -1

• The Spiral Lifecycle (diagrammed on the next slide as a
sequence of cycles) combines elements of the waterfall
lifecycle model, along with an emphasis on the use of risk
management techniques.

• Each cycle includes the following phases: Determine
goals, alternatives,constraints; risk analysis; prototype
development; product development and verification; and
planning for next phase.

SWENET SEP1 - 7

Spiral Development Model - 2

Need
Statement

Risk Analysis

Prototype

Software
Requirements

Development
Plan

Budget

Risk Analysis

Risk Analysis

Budget

Prototype

Prototype

Software
Design

Verified
Requirements

System
Test Plan

Verified
Design

Integration
Plan

Budget

Alternatives
Constraints

Risk Analysis

Prototype

Unit
Construction

Integration

System Test

Alternatives
Constraints

Alternatives
Constraints

Alternatives
Constraints

SWENET SEP1 - 8

Incremental Development Model - 1

• For the Incremental Model an overall architecture
of the total system is developed first and the
detailed increments and releases are planned.

• Each increment has its own complete lifecycle.
• The increments may be built serially or in

parallel depending on the nature of the
dependencies among releases and on availability
of resources.

• Each increment adds additional or improved
functionality to the system.

SWENET SEP1 - 9

Incremental Development Model - 2

1st increment

2nd increment

3rd increment

SWENET SEP1 - 10

Software Processes - 1
• A process is a series of steps involving activities,

constraints and resources that produce an intended output
of some kind.

• A software process (or a software engineering process)
guides and supports the development of a software
product.

• In the last decade there has been a great of deal of
resources devoted to the definition, implementation, and
improvement of software development processes.

• The list of references at the end of this presentation refer
to papers that provide background and discussion for
further study of software process features and issues.

SWENET SEP1 - 11

Software Processes - 2

• A “defined” software process would have a
documented description of its features
which would typically include the
following:
– scripts that define the process steps
– standards and procedures for carrying our

process steps
– forms and templates for collecting process

data and documenting process outcomes

SWENET SEP1 - 12

A Process Framework
• In the late 1980s, the Software Engineering Institute

(SEI), Carnegie Mellon University, developed the SW-
CMM (Software Capability Maturity Model) to help
organizations build effective software engineering
processes [6]. It has been widely adopted in industry,
primarily by large software development organizations.

• The next slide describes the five-level model
encompassing good engineering and management
practices.

• Many software development organizations have been
assessed using the SW-CMM framework. Results of such
assessments are shown in a later slide.

SWENET SEP1 - 13

SW-CMM Level Description
Key Process Areas

 Organization process focus
 Organization process definition
 Training program
 Integrated software management
 Software product engineering
 Intergroup coordination
 Peer reviews

5 Optimizing

4 Managed

3 Defined

2 Repeatable

Continuous process
improvement

Product and process
quality

Engineering process

Project management

Defect prevention
Technology change management
Process change management

Quantitative process management
Software quality management

Requirements management
Software project planning
Software project tracking
Software subcontract management
Software quality assurance
Software configuration management

Level Focus Key Process Areas

 Organization process focus
 Organization process definition
 Training program
 Integrated software management
 Software product engineering
 Intergroup coordination
 Peer reviews

5 Optimizing

4 Managed

3 Defined

2 Repeatable

Continuous process
improvement

Product and process
quality

Engineering process

Project management

Defect prevention
Technology change management
Process change management

Quantitative process management
Software quality management

Requirements management
Software project planning
Software project tracking
Software subcontract management
Software quality assurance
Software configuration management

Level Focus

5 Optimizing

4 Managed

3 Defined

2 Repeatable

Continuous process
improvement

Product and process
quality

Engineering process

Project management

Defect prevention
Technology change management
Process change management

Quantitative process management
Software quality management

Requirements management
Software project planning
Software project tracking
Software subcontract management
Software quality assurance
Software configuration management

Level Focus

SWENET SEP1 - 14

SW-CMM Assessment

%
 o

f O
rg

an
iz

at
io

ns

Based on most recent CMM assessments of
1158 organizations – March 2002

24.8%

39.9%

23.8%

6.0% 5.5%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ML1 ML2 ML3 ML4 ML5

SWENET SEP1 - 15

A Simple Software Process
• The Personal Software Process (PSPSM) is software process

developed at the SEI to address some of the SW-CMM practices at
the level of the individual programmer [3].

• PSP0 is the simplest version of PSP.
– It has three phases: planning, development and postmortem.
– The development phase has four sub-phases: design, code, compile, and

test.
– There are process scripts that describe what happens in each phase.
– There are logs and a summary sheet for collecting and analyzing data.
– The next two slides provide a graphic that depicts the PSP0 process

elements and an example of a process script.
• What kind of software development model does the PSP use?

SMPerosnal Software Process and PSP are service marks of Carnegie Mellon University.

SWENET SEP1 - 16

The PSP0 Process Flow

PSP0 Process

Finished product

Development

Planning

Postmortem

Design

Code
Compile
Test

Requirements

Plan
summary

Process
scripts

Time
and

defect
logs

SWENET SEP1 - 17

PSP0 Process Script
 Purpose: To guide you in developing module-level programs.
 Inputs Required Problem description

PSP0 project plan summary form
Time and defect recording logs
Defect type standard
Stop watch (optional)

1 Planning - Produce or obtain a requirements statement.
- Estimate the required development time.
- Enter the plan data in the project plan summary form.
- Complete the time log.

2 Development - Design the program.
- Implement the design.
- Compile the program and fix and log all defects found.
- Test the program and fix and log all defects found.
- Complete the time recording log.

3 Postmortem Complete the project plan summary form with actual
time, defect, and size data.

 Exit Criteria - A thoroughly tested program
- Completed project plan summary with estimated and

actual data
- Completed defect and time logs

SWENET SEP1 - 18

A Team Software Process

• The SEI also developed a Team Software Process
(TSP) that includes most of the key process areas
of the SW-CMM [7].

• Software is developed in multiple cycles with
each cycle made of multiple phases.

• An academic version of the TSP consist of three
cycles with teams consisting of five members,
each with a well defined role: a team leader, a
development manager, a planning manager, a
quality/process manager and a support manager.

SWENET SEP1 - 19

TSP Structure

Strategy 1

Plan 1
Requirements

Design 1
Implementation

Test 1
Postmortem 1

Strategy 2

Plan 2
Requirements

Design 2
Implementation

Test 2
Postmortem 2

Strategy 3

Plan 3
Requirements

Design 3
Implementation

Test 3
Postmortem 3

Product Need

Finished Product
Final Evaluation

Cycle 1 Launch
Cycle 2 Launch

Cycle 3 Launch

SWENET SEP1 - 20

Agile Processes
• Some have criticized highly-structured processes (such as those

based on a CMM framework) as unresponsive to change during a
development cycle (e.g., change in requirements or change in
technology).

• So-called “agile methods” have been developed to address this
criticism and reduce the cost of change throughout a project.

• Agile developers advocate the following [5]:
– individual and interactions over processes and tools
– working software over comprehensive software documentation
– customer collaboration over contract negotiation
– responding to change over following a plan

• One of the most widely practiced agile methodologies is Extreme
Programming (XP).

SWENET SEP1 - 21

Extreme Programming

• XP is designed for work in small to medium
teams (less than 10 members), building software
with vague or rapidly changing requirements.

• The XP life cycle has four basic activities [6]:
– continual communication with the customer and

within the team
– simplicity, achieved by a constant focus on minimalist

solutions
– rapid feedback through unit and functional testing
– emphasis on dealing with problems proactively

SWENET SEP1 - 22

XP Practices
• XP typically consists of 12 practices [6]. Here are a few:

– Small Releases: Put s simple system into production quickly. Release
new version on a very short (2 week) cycle.

– Simple Design: Design as simply as possible at any given moment.
– Testing: Developers continually write unit tests that must run flawlessly.
– Pair Programming: All production code is written by two programmers

at one machine.
– 40-hour weeks: Work no more than 40 hours per week whenever

possible.
– On-site Customer: Have a customer on the team full-time to answer

questions.
– Coding Standards: Have rules that emphasize communication

throughout the code.

SWENET SEP1 - 23

Process Exercise

• The exercise booklet for this module
includes reading and discussion about
software processes.

• The exercise also includes a problem
where you define a process for carrying out
some familiar activity.

• After you complete the exercise, we will
discuss it in class.

SWENET SEP1 - 24

References

1. Bourque P. and Dupuis R., eds. Guide to the Software Engineering Body of Knowledge, IEEE
CS Press, Los Alamitos, Calif., 2001. (http://www.swebok.org/)

2. Brooks, F. P., The Mythical Man Month, Chapter 2: "The Mythical Man Month", pp. 13-26,
Addison-Wesley, 1999.

3. Ferguson, P., Humphrey, W., Khajenoori, S., Macke, S., and Matvya, A. "Introducing the
Personal Software Process: Three Industry Case Studies," Computer, pp. 24-31, May 1997.

4. Fleming, R., "A Fresh Perspective on Old Problems", IEEE Software, pp 106-113, January
1999.

5. Highsmith, J. and Cockburn, A., "Agile Development: The Business of Innovation", pp. 120-
122, Computer, September 2001.

6. Paulk, M., "Extreme Programming from a CMM Perspective", IEEE Software, pp. 19-26,
November 2001.

7. Webb, D. and Humphrey, W. S., "Using the TSP on the TaskView Project", CrossTalk,
Journal of Defense Software Engineering, pp. 3-10, February 1999.
(http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1999/02/webb.asp)

