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Software Development Models

• Over the years, various models have emerged 
to support the development of software 
products. 

• The models address the following life-cycle 
activities:
– requirements analysis and specification
– design 
– construction
– testing
– operation and maintenance
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Waterfall Development Model - 1

• The Waterfall life cycle model emphasizes that software 
is developed in sequential phases (e.g., analysis, design, 
code, etc.) with established milestones, documents, and 
reviews at the end of each phase. 

• In the pure waterfall there is no overlap of phases; 
however, in refinement of the model, “feedback loops” 
are introduced to allow return to previous phases (e.g., 
design analysis leads back to modification of the 
requirements)
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Waterfall Development Model - 2
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Spiral Development Model -1 

• The Spiral Lifecycle (diagrammed on the next slide as a 
sequence of cycles) combines elements of the waterfall 
lifecycle model, along with an emphasis on the use of risk 
management techniques. 

• Each cycle includes the following phases: Determine 
goals, alternatives,constraints; risk analysis; prototype 
development; product development and verification; and 
planning for next phase. 



SWENET SEP1 - 7

Spiral Development Model - 2
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Incremental Development Model - 1

• For the Incremental Model an overall architecture 
of the total system is developed first and the 
detailed increments and releases are planned. 

• Each increment has its own complete lifecycle.
• The increments may be built serially or in 

parallel depending on the nature of the 
dependencies among releases and on availability 
of resources. 

• Each increment adds additional or improved 
functionality to the system.
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Incremental Development Model - 2
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Software Processes - 1
• A process is a series of steps involving activities, 

constraints and resources that produce an intended output 
of some kind.

• A software process (or a software engineering process) 
guides and supports the development of a software 
product. 

• In the last decade there has been a great of deal of 
resources devoted to the definition, implementation, and  
improvement of software development processes.

• The list of references at the end of this presentation refer 
to papers that provide background and discussion for 
further study of software process features and issues.
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Software Processes - 2

• A “defined” software process would have a 
documented description of its features 
which would typically include the 
following:
– scripts that define the process steps
– standards and procedures for carrying our 

process steps
– forms and templates for collecting process 

data and documenting process outcomes
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A Process Framework
• In the late 1980s, the Software Engineering Institute 

(SEI), Carnegie Mellon University, developed the SW-
CMM (Software Capability Maturity Model) to help 
organizations build effective software engineering 
processes [6]. It has been widely adopted in industry, 
primarily by large software development organizations.

• The next slide describes the five-level model 
encompassing good engineering and management 
practices.

• Many software development organizations have been 
assessed using the SW-CMM framework. Results of such 
assessments are shown in a later slide.
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SW-CMM Level Description
Key Process Areas
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SW-CMM Assessment
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A Simple Software Process
• The Personal Software Process (PSPSM) is software process 

developed at the SEI to address some of the SW-CMM practices at 
the level of the individual programmer [3].

• PSP0 is the simplest version of PSP.
– It has three phases: planning, development and postmortem.
– The development phase has four sub-phases: design, code, compile, and 

test.
– There are process scripts that describe what happens in each phase.
– There are logs and a summary sheet for collecting and analyzing data.
– The next two slides provide a graphic that depicts the PSP0 process 

elements and an example of a process script.
• What kind of software development model does the PSP use?

SMPerosnal Software Process and PSP are service marks of Carnegie Mellon University.
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The PSP0 Process Flow
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PSP0 Process Script
 Purpose: To guide you in developing module-level programs. 
 Inputs Required Problem description 

PSP0 project plan summary form 
Time and defect recording logs 
Defect type standard 
Stop watch (optional) 

1 Planning -  Produce or obtain a requirements statement. 
-  Estimate the required development time. 
-  Enter the plan data in the project plan summary form. 
-  Complete the time log. 

2 Development -  Design the program. 
-  Implement the design. 
-  Compile the program and fix and log all defects found. 
-  Test the program and fix and log all defects found. 
-  Complete the time recording log. 

3 Postmortem Complete the project plan summary form with actual 
time, defect, and size data. 

 Exit Criteria -  A thoroughly tested program 
-  Completed project plan summary with estimated and 

actual data 
-  Completed defect and time logs 
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A Team Software Process

• The SEI also developed a Team Software Process 
(TSP) that includes most of the key process areas 
of the SW-CMM [7].

• Software is developed in multiple cycles with 
each cycle made of  multiple phases.

• An academic version of the TSP consist of three 
cycles with teams consisting of five members, 
each with a well defined role: a team leader, a 
development manager, a planning manager, a 
quality/process manager and a support manager.
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TSP Structure
 

Strategy 1 

Plan 1
Requirements 

Design 1
Implementation 

Test 1
Postmortem 1

Strategy 2 

Plan 2
Requirements 

Design 2
Implementation 

Test 2
Postmortem 2 

Strategy 3 

Plan 3
Requirements 

Design 3
Implementation 

Test 3
Postmortem 3 

Product Need 

Finished Product
Final Evaluation 

Cycle 1 Launch 
Cycle 2 Launch 

Cycle 3 Launch 

SWENET SEP1 - 20

Agile Processes
• Some have criticized highly-structured processes (such as those 

based on a CMM framework) as unresponsive to change during a 
development cycle (e.g., change in requirements or change in 
technology).

• So-called “agile methods” have been developed to address this 
criticism and reduce the cost of change throughout a project.

• Agile developers advocate the following [5]:
– individual and interactions over processes and tools
– working software over comprehensive software documentation
– customer collaboration over contract negotiation
– responding to change over following a plan

• One of the most widely practiced agile methodologies is Extreme 
Programming (XP).
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Extreme Programming

• XP is designed for work in small to medium 
teams (less than 10 members), building software 
with vague or rapidly changing requirements.

• The XP life cycle has four basic activities [6]:
– continual communication with the customer and 

within the team
– simplicity, achieved by a constant focus on minimalist 

solutions
– rapid feedback through unit and functional testing
– emphasis on dealing with problems proactively
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XP Practices
• XP typically consists of 12 practices [6]. Here are a few:

– Small Releases: Put s simple system into production quickly. Release 
new version on a very short (2 week) cycle.

– Simple Design: Design as simply as possible at  any given moment.
– Testing: Developers continually write unit tests that must run flawlessly.
– Pair Programming: All production code is written by two programmers 

at one machine.
– 40-hour weeks: Work no more than 40 hours per week whenever 

possible.
– On-site Customer: Have a customer on the team full-time to answer 

questions.
– Coding Standards: Have rules that emphasize communication 

throughout the code.



SWENET SEP1 - 23

Process Exercise

• The exercise booklet for this module 
includes reading and discussion about 
software processes.

• The exercise also includes a problem 
where you define a process for carrying out 
some familiar activity.

• After you complete the exercise, we will 
discuss it in class.
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