Architecture Design 2 for the Meeting Scheduler System Project
Architectural Style: Napster-style Peer-to-peer system

Target platform: Cellular phones

Desired quality attributes: security, performance, bandwidth
Architecture

This architectural design is a peer-to-peer system assisted with a central server. All schedule data are distributed among individual cellular phones. Figure 1 depicts the overall system architecture. Figure 2 shows a typical meeting request and schedule negation process. Each mobile station is a cellular phone. The Scheduling Server in this figure runs on a computer connected to the Internet. Figure 3 shows the architecture of the portion of the software running on the server; Figure 4 shows the architecture of the portion of the software running on cellular phones.
[image: image1.png]Sorver

—

<<subsystem>>
Scheduling Server

1

]

Cell Phone

<<subsystom>>
Personal Schedule System

Figure 1. Architectural overview of the Meeting Scheduling System.

[image: image2.png]Enter gener
meeting nfo

‘Send Schadule sends.
daily schedule for
each roquested day.

Update Schedule.

i

Mobile station 1 | | Mobile station 2 ‘Scheduling Server
T 7 heml I
! | J
! i [E— !
! i s fom ey ! Hoaung Roduest
: g jroindtivens
i I ‘SMS/email I ust ot
| |
B Ssiomal |
1S
!

hitps form request

o e
! hitps form reply " Schedule Collection
: R oo
! L
! !
! !
! !
! !
: R e Y
! st R BT
b !
! !
A
[!

Schedule Dissemination.

Figure 2. The interactions between the users and the system.
In this system, both SMS
/email messages and HTML form data via HTTPS
 are used as communication methods. SMS/email messages are used for asynchronous notification, e.g. requesting an action to be performed, such as accessing a web page. HTML form data via HTTPS are used when send or receive information in a synchronous fashion, which will be processed automatically.

[image: image3]Figure 3. Architecture of the server portion of the Meeting Scheduling System.
In Figure 3, the Meeting Request module is triggered by a user requesting a meeting via a HTML web page and tells the SMS Generation module to send SMS requests with web page references. The Schedule Collection module requests and receives all available schedule data for the days of the meeting and sends them to the Scheduling Algorithm module. Once the Scheduling Algorithm module receives all responses (or after timeout), it sends email messages to all meeting participants. The Schedule Dissemination module forwards the new schedule items to all participants when they receive the email notification.

[image: image4]Figure 4. Architecture of the portion of the software that runs on cellular phones.

In Figure 4, when a user wishes to schedule a meeting, the user can initiate the process by visiting a particular web page on the Scheduling Server via the Browser. Then, the Personal Schedule System will collaborate with the Scheduling Server to schedule the meeting via HTTPS. Separately, users can schedule other events locally via the Edit Schedule module.
Discussion

Security of this architectural design is implemented by the adoption of the secure HTTP protocol. Performance of the portion of the software running on cellular phones is improved by performing the scheduling algorithm on the server side even though individual schedules are stored on individual cellular phones. The requirement for bandwidth is limited by requesting only schedule data of the days for the meeting from each participant, and by using queued SMS/email and HTTP instead of continually polling the phones.

SMS Generation

Schedule Collection

Schedule Dissemination

Meeting Request

Scheduling Algorithm

Schedule Request HTTPS Form Generation

MySQL

SMS/Email

Browser

Send Schedule

Update Schedule

Personal Schedule System

Edit Schedule

HTML/HTTPS

TCP

IP

MAC (Medimum Access Control)

Physical Layer

� SMS: Short Message Service (Email-like service).

� HTTPS: Secure HyperText Transfer Protocol

