
 p. 18

Title:

Foundation Programming Assignment

Abstract:

This module presents a two-step program assignment for the object-oriented design course. The assignment serves as a foundation for design and programming project.

For this assignement, students are given design documents and are required to implement the design. The emphasis is on learning the design notations and on conformation of the programs to the design documents. The module includes common design requirements which (while not all applicable to the assignment) are required for subsequent project work.
Size: Lecture 2 – 4 hours; Laboratory 1 – 3 weeks.

Comments: Assignment for use in object-oriented design and architecture course

(CS3 equivalent). The time allocation varies depending on how much of the foundation concepts and IDE features must be presented.
SEEK Categories:
Author: William Hankley

Prerequisites: Programming experience using Java, including GUIs and standard collections. Corequisite: use of IDE tool.
Learning Objectives:

1. Knowledge of UML+ design documents and their relation to program code.

1. Concepts: common program requirements.

2. Application: Programming to conform to design documents.

Laboratory Assignments 1 & 2: QuotesMessage Program
Purpose:

1. To become familiar with design documents for software development.

2. To become familiar with required architecture for software projects.

3. To become familiar with common requirements that will be understood

 to hold for all software projects (at least for the current course).

4. To be able to develop software in conformance with design requirements.

Statement:

Develop and deliver a GUI application in which the user is required to enter a user name

and then will be presented with a welcome message and “positive” quote.

For version 1, a single quote may be hard coded in the program.

For version 2, a stored collection of quotes will be maintained
 and a log of users will be maintained..
Supporting documents:

1. Common Requirements

2. Use cases

3. GUI-state model

4. Class models

5. Sequence models

6. Status report form

Common Requirements:
Common requirements are those imposed by an organization for all software to be developed within the organization. The common requirements do not include functional and behavioral requirements that are particular to and define a specific application.

Comon requirement are to be checked by an organization review team and are not the responsibility of the customer for a specific application

1. Submission format:

 A floppy disk or CD must be labeled with the following information.

 For a floppy disk the a label must be attached and the label must be correctly

 oriented with the access slider at the bottom of the disk.

 For a CD, the CD case must also be labeled.

 The label information must be printed, with black ink, with at least 14 font.

 The information must include:

 Name, Course number, homework title and number, and date.

 Folder structure:
 There should be no unrelated folders.
 The program folder should be at the root level with a name as:

 H1_QuotesMessageFolder

 The program folder should contain:
 readme.txt (if any)
 QuotesMessage.bat (to run the program; it should not compile the program).

 “src” folder, which contains:
 package folders, which contain
 *.java
 “classes” folder , which contain
 package folders, which contain
 *.class
 “lib” folder for any *.jar files
 “data” folder, which may contain
 *.jpg
 *.txt (for help text files and other)

 *.ser (for serailized data files)

 *.xml (for xml data files)
 Versions of the source and class files should be consistent.

 No backup files should be on the disk.
 The executable bat file should have the structure:

echo on;

 java -classpath “./classes; <jars>” package.H1_MessageApp;

pause;

 (the echo and pause allow user to see execution error messages);

 assume that “java” is a system command for the target machine;

 assume that the basic jdk classes are available,

 but be sure to include any required jar components.
2. GUI features:
 There should be an informative title on the frame bar;

 the main frame should be centered on screen;
 any pop-up frames should be off-set over the main frame;

 the go-away box on the main frame should close the program;

 if there are any slow initialization steps there should be

 a splash frame dislayed in the jbInit() method;

 The main frame should have standard menus (file, edit, options, help);
 the frames should use a common color scheme (see sample program);
 inactive controls should be dimmed.
 File:load and File:save commands should use the standard file chooser component.

 Help:about should display a about frame with program and author information

and author’s picture (1.5 x 1.0 in).

 Help:help should display an information frame with verticle scollable text;
 help text should be loaded using a single block read (not multiple readlines).
 Use XYLayout (or equivalent – this will show use of an external component

 that is not part of the Java jdk).

 On user screens, date selection should use a CalendarChooser bean;

 when ever possible, user input should allow selection of values rather than data entry;

 input values should be checked for non-null and illegal forms;

 Any slow progress operations should show a progress bar and should allow cancel.
 There should be meaningful error messages provided to the user.

3. Code and semantic style:

 All source files should be signed with name, date, and course number.

 Local persistent data should be saved to a serialized file (*.ser);

 external data may be saved as XML form;

 central persisten data may be saved to a remote data base.

 Use informative names for classes, methods, beans, as:

 someApp

 someFrame

 collections as “AllUsers”.
 Use anonymous event-handler methods in the containing frame

(the frame should not implement ActionListener);
 event handlers and GUI components should not implement much logic –
instead, they should call methods in the object-model domain classes;

 object-model domain classes should use DM (data management) classes
to connect to persistent data (except for automatic object-relational mapping).

 Program exit must complete a full system exit (do not leave the VM running);

 program data must be saved before system exit.

 All data file names must be relative to the project folder

(not absolute paths as C:/stuff or U:/stuff).

4. Class and package architecture:

App-GUI-model-[controller]-DM organization of classes (see samples).

Collections use standard collections classes (java.util.*);

generally, collections should not be identified as “list”or “array”;

generally, collections should be wrapped in an adaptor class which

presents just necessary methods.

An application should be organized as a package;

major sub-components should be separate packages.

QuotesMessage Use Cases:
1. Version 1:

User:

 GetMessage (in name, out message):

pre: name =/= null

post: message displayed

 comments: see gui model

2. Version 2:

User:

 GetMessage(in name, out message):

pre: name =/= null

post: Log(name) = +1
 and message displayed

comments: message should include some “famous” quotation

 and identification of the author;

 use a map for name -> count

 Option:addQuote(in author, in quote)

post: Collection = + (author, quote)

 Option:viewLog ()

post: log of user + count displayed

comment: scrollable display

 GetNext ():

pre: previous message displayed

post: new message displayed

 Name: ________________________________

Re: QuotesMessage program Status Report

	ITEM
	STATUS (√ done, + understood, x not yet)

	Help Frame
	

	 load text block
	

	 scroll text
	

	About Frame
	

	
 display image
	

	Program architecture
	

	
FM class
	

	
QuotesModel class
	

	Quotes / User models
	

	
use Map collection
	

	
wrapper/adaptor class
	

	
add user method
	

	
get stats method
	

	
add quote method
	

	
get / getNext quote method
	

	GUI
	

	 filechooser
	

	 writeObject, readObject (1 obj)
	

	
Add Quote frame
	

	
View Stats frame
	

	
main view quote frame
	

	
use XY layout
	

	Deployment
	

	
bat file
	

	
program works
	

	
est. % done
	

	Estimate completion date
	

[image: image1.jpg]Newme ®
13581 7 Spos
BE Q2

classes

[image: image2.jpg]EONE name e
& o cor???”

Onthe nawy

v

oz X,
Weltem 15 13450,
Sitnlied by Sy

)

[image: image3.jpg]e

|
& l
(. j F)LMW);WJ
LFW 1

D:wzwj

ERIRr=sal Gy

S sk F»}W
gy Y VTN
h= RN

‘
‘ N
e PR

[image: image4.jpg]

[image: image5.jpg]

[image: image6.jpg]Bt Pattw caction Pardrms d (0)
Gotmery Buvtw-actinPeriomed (o)
\

[image: image7.jpg]Quirr by { mple ementatrion developmont,
TN bt))

Swy
Gugtss Collertun géu a
7" >
<
| hselog Wop) R

A=W
[Qupy e)
——

Lond { Fraaa) | ..

sour (Laame t ""”;ﬁwm E

Em® g file navesy

[image: image8.jpg]Quiber: iy Boggn (oairradt domam moaid

)i
’
wir
oxthi), auvha.
Wov el e qutes

[image: image9.jpg]@u\ e
shLen (Y
Fen

Coltetu

Lx voadt
Loy as
L Gowches Em

B SNy

putCawdiz Gushe.

sy A= gl
9t (authar) 7 guelewpee —o-aw

el

b (V1 S g L

Uhsantoq

sdd (asinane) B e
@t (L\W‘MM}; v

ety (Y

et an int
~ m an
Suanyg ()

St s) = siname e Gount

[image: image10.jpg]i usy Logg vy

£ (& @

rame)

NG
Tname &wal)
bl b o glnamd

get mossage .

[image: image11.jpg]

