
SWENET PRO2 Exercise

SWENET Module
PRO2 - Introduction to the Personal Software ProcessSM (PSPSM)

Software Process Measurement
Exercise Booklet

Developed with support from the National Science Foundation

SM Personal Software Process and PSP are service marks of Carnegie Mellon University.

SWENET PRO2 Exercise

1

Table of Contents

Exercise Description ... 2

Exercise Objectives .. 2

Reading Assignment... 2

Scenario Assignment.. 2

Exercise Deliverables ... 2

Appendix A ... 3

SWENET PRO2 Exercise

2

Exercise: Software Process Measurement

Exercise Description
The exercise involves reading about the PSP and completing a scenario based exercise
on tracking PSP work.

Exercise Objectives
Students completing this exercise will be able to:
* Describe the steps in using the PSP to develop a simple program.
* Use the PSP logs (Time, Defect and Plan Summary) to record data.

Reading Assignment
Read Chapters 3, 10 and 12 in [Humphrey 1997].

[Humphrey 1997] Humphrey, Watts S., Introduction to the Personal Software Process,
Addison Wesley, 1997.

Scenario Assignment
Appendix A contains an exercise that requires reading a scenario (about a student
completing a PSP programming assignment) and completing PSP logs and a summary
form for the scenario.

Exercise Deliverables
* Completed PSP Time and Defect logs, and a Plan Summary form.

SWENET PRO2 Exercise

3

Appendix A
* Software Defects
The term software defect refers to something that is wrong in a program (or in a related
artifact - like the design for a program). A defect might be as simple as a missing
semicolon (a syntax error) or more complicated, as when an incorrect formula is used (a
logic error). The primary measure of the quality of a program is the number of defects
that it contains. In developing a program, there are several ways to find defects in a
program: personal review of the program code, compiling the program code, and using
test data in executing a program.

In order to improve the quality of programs, it is important to find and remove as many
defects as possible. This is one of the most difficult parts of programming and requires
a disciplined and focused effort by the programmer in order to be successful. The PSP
incorporates a number of features that can help a programmer improve software quality.
These include the following:

> classifying defects by type
> recording detailed information about each defect found and removed
> formal review of a program using a checklist
> summarizing defects found and removed on the Plan-Summary form
> computing and analyzing defect removal and software quality statistics

* Defect Types

The following table classifies different types of defects:

type code name description
doc 10 Documentatio

n
comments, messages

syn 20 Syntax spelling, punctuation, typos, instruction formats, etc.
bld 30 Build,

Package
change management, library, version control

asg 40 Assignment declaration, identifier names, scope, limits
int 50 Interface procedure calls, context clauses, and references, I/O, user

prompts, output labeling
chk 60 Checking error messages, inadequate checks or exception handling
dat 70 Data structure, content
fun 80 Function logic, pointers, loops, recursion, computation, function

defects
sys 90 System system configuration, timing, memory
env 100 Environment tool support and operating system problems

The defect types in bold-face (syn, asg, int, and fun) are ones that you are most likely to
find in your program and they are the ones you should concentrate on in this exercise.
For example, the below table indicates some common defects and there types:

defect description type

SWENET PRO2 Exercise

4

leaving off a semicolon at the end of an instruction syn
failing to declare a variable used in a program asg
placing the parameters in the wrong order in a procedure call int
using an incorrect Boolean expression as the loop condition in a while loop fun

* Instructions
In the below scenario a student, Inez C. Light, develops a program using the PSP.
Using the attached Time Recording Log, Defect Recording Log and Plan-Summary
form, track and record Inez's work in each PSP phase.

Note:
* The time spent correcting errors is counted as part of the phase in which the error is

discovered. For instance, if a logic error is discovered while testing a program, the
time spent in finding the error and correcting it counted as "test" time.

* Estimate the fix time for defects.

* Scenario

A first year student, Inez C. Light, is enrolled in CS1 for the spring 2004 semester. She
has studied the PSP and decides to use it in a CS1 programming assignment for
calculating the mean and standard deviation for a set of input numbers, which are
stored in one-dimensional arrays. On Thursday (2/12/04), Inez begins work on the
assignment [0800] by reviewing the requirements in the assignment package, including
the test requirements, to be sure she understands them. She copies the requirements to
her engineering notebook. Then, based on the data presented on past student
performance and Inez’s feeling about her own performance, she estimates that the
program will have about 120 LOC and the assignment will take about 220 minutes to
complete. She writes the estimates on her Plan Summary and completes the rest of the
planning part of the form. She then places this in her notebook. [0844].

After taking a break for some coffee, she starts to design the program [0850]. She
sketches out an overall algorithm for solving the problem and identifies the routines
she’ll need for input of the data and for computing the mean and standard deviation.
She copies the algorithms into her engineering notebook. Inez then goes off to her next
class [0955].

After a lunch, Inez begins coding [1332]. While working on coding, Inez is interrupted by
a classmate who doesn’t understand how to get started. She spends 5 minutes
explaining some elements of the requirements and then gets back to coding. Inez
finishes coding of all the routines [1417]. After a short break, she prints out a copy of
her source code and begins a code review [1425]. Inez checks the printed copy against
her code review checklist and finds that her design did not include initialization of a
“Sum” variable. She changes the design and fixes the code [1447].

SWENET PRO2 Exercise

5

Next Inez compiles the program [1450] and gets an error message, missing semicolon.
Looking at the compiler output, Inez sees where the missing semicolon belongs and
fixes the source code. She recompiles the program and gets another error message,
“undeclared identifier”. Surprised, since she thought she declared this identifier, Inez
searches through the source code and discovers that the identifier she declared had an
‘_’ in it and this one didn’t. She fixes the error, then quickly scans the rest of the source
code and finds three more places where she left out the ‘_’, and also fixes them. She
again recompiles the program and gets another error message, incorrect parameter
type. She studies the code for a couple of minutes, sees the error, and corrects her
design and fixes the source code. Inez recompiles the program and gets another
semicolon error. She fixes the code, recompiles the code, and gets no compile errors
[1543].

After a short break, Inez loads the program and begins executing the first test case
[1555]. The program executes and prints out the correct value for the mean of the
numbers, but the value of the standard deviation is incorrect. Inez studies the source
code for the standard deviation routine and but cannot find the problem. She then tries
another test case, but still gets an incorrect answer. Inez then starts using input data to
trace through the program, but she gets confused and lost in the trace, and still cannot
spot the problem. After talking to some other students about her problem and trying
some “trial and error” things, Inez decides to stop work on the problem for the day
[1708]. The next day Inez goes to her instructor’s office and meets with him to discuss
the problem in her program [1000]. He looks through the code and says he thinks she
has made a mistake coding the standard deviation formula. He suggests that Inez take
a small set of input data (four numbers) and use it to trace through the standard
deviation routine. Inez thanks him and heads off to her next class [1015]. That evening
[1836] Inez goes back to work on her program. She creates a simple test case and
begins tracing through her source code. In a short time, she finds the error in her code
(parentheses were use incorrectly). She then corrects her design, changes the code for
the standard deviation routine, and recompiles the code, with no compile errors. She
then executes the program with all test cases and gets correct results for each case
[1909].

After a break, Inez begins completing her PSP Plan Summary form [1933].
She counts the LOC in her program and finds she has produced 104 LOC. Next, she
fills in the actual time data and the actual defect data, and then makes the required
calculations. Inez finishes the Plan Summary, prints out all program code, and
assembles all assignment documents [1953].

SWENET PRO2 Exercise

6

Time Log

Student I.C. Light Date 2/12/04
Instructor U. R. Thayer Class CS 1
Program Assignment # 3 - Statistics

Date Start Stop Int ∆ t Activity Comment

SWENET PRO2 Exercise

7

Defect Recording Log

Student I.C. Light Date 2/12/04
Instructor U. R. Thayer Class CS1
Program Assignment # 3 - Statistics
Date Def.

Num.
Type Phase

Injected
Phase
Removed

Fix
Time

Description

type cod
e

name description

doc 10 Documentation comments, messages
syn 20 Syntax spelling, punctuation, typos, instruction formats, etc.
bld 30 Build, Package change management, library, version control
asg 40 Assignment declaration, identifier names, scope, limits
int 50 Interface procedure calls, context clauses, and references, I/O, user prompts,

output labeling
chk 60 Checking error messages, inadequate checks and exception handling
dat 70 Data structure, content
fun 80 Function logic, pointers, loops, recursion, computation, function defects
sys 90 System system configuration, timing, memory
env 100 Environment tool support and operating system problems

SWENET PRO2 Exercise

8

PSP Project Plan Summary Report

Student I.C. Light Date 2/12/04
Instructor U. R. Thayer Class CS1
Program Assignment # 3 - Statistics

Program Size (LOC) Plan Actual To Date
Total New & Changed 120
Maximum Size 200
Minimum Size 75

Time in Phase (min.) Plan Actual To Date To Date %
Planning 20
Design 60
Design Review 0
Code 60
Code Review 30
Compile 15
Test 15
Postmortem 20
 Total 220
 Maximum Time 330
 Minimum Time 120

Defects Injected Plan Actual To Date To Date %
Design 1
Design Review 0
Code 4
Code Review 0
Compile 0
Test 0
 Total 5

Defects Removed Plan Actual To Date To Date %
Design 0
Design Review 0
Code 0
Code Review 4
Compile 1
Test 0
 Total 5

Summary Plan Actual To Date
LOC/Hour 32.7
Defects/KLOC 41.6
Pre-Compile Yield 80%

Comments:__

